45 research outputs found

    Measurement of Spin Polarization by Andreev Reflection in Ferromagnetic In1-xMnxSb Epilayers

    Full text link
    We carried out Point Contact Andreev Reflection (PCAR) spin spectroscopy measurements on epitaxially-grown ferromagnetic In1-xMnxSb epilayers with a Curie temperature of ~9K. The spin sensitivity of PCAR in this material was demonstrated by parallel control studies on its non-magnetic analog, In1-yBeySb. We found the conductance curves of the Sn point contacts with In1-yBeySb to be fairly conventional, with the possible presence of proximity-induced superconductivity effects at the lowest temperatures. The experimental Z-values of interfacial scattering agreed well with the estimates based on the Fermi velocity mismatch between the semiconductor and the superconductor. These measurements provided control data for subsequent PCAR measurements on ferromagnetic In1-xMnxSb, which indicated spin polarization in In1-xMnxSb to be 52 +- 3%

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Point Contact Spin Spectroscopy of Ferromagnetic MnAs Epitaxial Films

    Full text link
    We use point contact Andreev reflection spin spectroscopy to measure the transport spin polarization of MnAs epitaxial films grown on (001) GaAs. By analyzing both the temperature dependence of the contact resistance and the phonon spectra of lead acquired simultaneously with the spin polarization measurements, we demonstrate that all the point contacts are in the ballistic limit. A ballistic transport spin polarization of approximately 49% and 44% is obtained for the type A and type B orientations of MnAs, respectively. These measurements are consistent with our density functional calculations, and with recent observations of a large tunnel magnetoresistance in MnAs/AlAs/(Ga,Mn)As tunnel junctions.Comment: 5 Figure

    COX2 genetic variation, NSAIDs, and advanced prostate cancer risk

    Get PDF
    Collective evidence suggests that cyclooxygenase 2 (COX2) plays a role in prostate cancer risk. Cyclooxygenase 2 is the major enzyme that converts arachidonic acid to prostaglandins, which are potent mediators of inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzymatic activity of COX2 and long-term use of NSAIDs appears to modestly lower the risk of prostate cancer. We investigated whether common genetic variation in COX2 influences the risk of advanced prostate cancer. Nine single-nucleotide polymorphisms (SNPs) in COX2 were genotyped among 1012 men in our case–control study of advanced prostate cancer. Gene–environment interactions between COX2 polymorphisms and NSAID use were also evaluated. Information on NSAID use was obtained by questionnaire. Three SNPs demonstrated nominally statistically significant associations with prostate cancer risk, with the most compelling polymorphism (rs2745557) associated with a lower risk of disease (odds ratio (OR) GC vs GG=0.64; 95% confidence interval (CI): 0.49–0.84; P=0.002). We estimated through permutation analysis that a similarly strong result would occur by chance 2.7% of the time. Nonsteroidal anti-inflammatory drug use was associated with a lower risk of disease in comparison to no use (OR=0.67; 95% CI: 0.52–0.87). No significant statistical interaction between NSAID use and rs2745557 was observed (P=0.12). Our findings suggest that variation in COX2 is associated with prostate cancer risk

    Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma

    Get PDF
    Cyclooxygenase 2 (Cox-2) is upregulated in colorectal adenomas and carcinomas. Polymorphisms in the Cox-2 gene may influence its function and/or its expression and may modify the protective effect of nonsteroidal anti-inflammatory drugs (NSAIDs), thereby impacting individuals' risk of developing colorectal cancer and response to prevention/intervention strategies. In a nested case–control study, four polymorphisms in the Cox-2 gene (two in the promoter, −663 insertion/deletion, GT/(GT) and −798 A/G; one in intron 5-5229, T/G; one in 3′untranslated region (UTR)-8494, T/C) were genotyped in 726 cases of colorectal adenomas and 729 age- and gender-matched controls in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. There was no significant association between the Cox-2 polymorphisms and adenoma development in the overall population. However, in males, the relatively rare heterozygous genotype GT/(GT) at −663 in the promoter and the variant homozygous genotype G/G at intron 5-5229 appeared to have inverse associations (odds ratio (OR)=0.59, confidence interval (CI): 0.34–1.02 and OR=0.48, CI: 0.24–0.99, respectively), whereas the heterozygous genotype T/C at 3′UTR-8494 had a positive association (OR=1.31, CI: 1.01–1.71) with adenoma development. Furthermore, the haplotype carrying the risk-conferring 3′UTR-8494 variant was associated with a 35% increase in the odds for adenoma incidence in males (OR=1.35, CI: 1.07–1.70), but the one with a risk allele at 3′UTR-8494 and a protective allele at intron 5-5229 had no effect on adenoma development (OR=0.85, CI: 0.66–1.09). Gender-related differences in adenoma risk were also noted with tobacco usage and protective effects of NSAIDs. Our analysis underscores the significance of the overall allelic architecture of Cox-2 as an important determinant for risk assessment

    Polymorphisms in regulatory regions of Cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase-2 (COX-2) is up-regulated in several types of cancer, and it is hypothesized that COX-2 expression may be genetically influenced. Here, we evaluate the association between single-nucleotide polymorphisms (SNPs) in the COX-2 gene (<it>PTGS2</it>) and the occurrence of breast cancer among Brazilian women.</p> <p>Methods</p> <p>The study was conducted prospectively in two steps: First, we screened the promoter region and three fragments of the 3'-untranslated region of <it>PTGS2 </it>from 67 healthy Brazilians to identify SNPs and to select those with a minor allele frequency (MAF) of at least 0.10. The MAF of these selected SNPs was further characterized in 402 healthy volunteers to evaluate potential differences related to heterogeneous racial admixture and to estimate the existence of linkage disequilibrium among the SNPs. The second step was a case-control study with 318 patients and 273 controls designed to evaluate <it>PTGS2 </it>genotype- or haplotype-associated risk of breast cancer.</p> <p>Results</p> <p>The screening analysis indicated nine SNPs with the following MAFs: rs689465 (0.22), rs689466 (0.15), rs20415 (0.007), rs20417 (0.32), rs20419 (0.015), rs5270 (0.02), rs20424 (0.007), rs5275 (0.22) and rs4648298 (0.01). The SNPs rs689465, rs689466, rs20417 and rs5275 were further studied: Their genotypic distributions followed Hardy-Weinberg equilibrium and the MAFs were not affected by gender or skin color. Strong linkage disequilibrium was detected for rs689465, rs20417 and rs5275 in the three possible pairwise combinations. In the case-control study, there was a significant increase of rs5275TC heterozygotes in cases compared to controls (OR = 1.44, 95% CI = 1.01-2.06; P = 0.043), and the haplotype formed by rs689465G, rs689466A, rs20417G and rs5275C was only detected in cases. The apparent association with breast cancer was not confirmed for rs5275CC homozygotes or for the most frequent rs5275C-containing haplotypes.</p> <p>Conclusions</p> <p>Our results indicate no strong association between the four most frequent <it>PTGS2 </it>SNPs and the risk of breast cancer.</p

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
    corecore